Spectral Clustering Ensemble Applied to SAR Image Segmentation
نویسندگان
چکیده
منابع مشابه
SAR image segmentation using MSER and improved spectral clustering
A novel approach is presented for synthetic aperture radar (SAR) image segmentation. By incorporating the advantages of maximally stable extremal regions (MSER) algorithm and spectral clustering (SC) method, the proposed approach provides effective and robust segmentation. First, the input image is transformed from a pixelbased to a region-based model by using the MSER algorithm. The input imag...
متن کاملQuantum evolutionary clustering algorithm based on watershed applied to SAR image segmentation
The goal of segmentation is to partition an image into disjoint regions. In this paper, the segmentation problem based on partition clustering is viewed as a combinatorial optimization problem. A new algorithm called a quantum evolutionary clustering algorithm based on watershed (QWC) is proposed. In the new algorithm, the original image is first partitioned into small pieces by watershed algor...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملEnabling scalable spectral clustering for image segmentation
Spectral clustering has become an increasingly adopted tool and an active area of research in the machine learning community over the last decade. A common challenge with image segmentation methods based on spectral clustering is scalability, since the computation can become intractable for large images. Down-sizing the image, however, will cause a loss of finer details and can lead to less acc...
متن کاملSpectral Clustering Algorithms for Ultrasound Image Segmentation
Image segmentation algorithms derived from spectral clustering analysis rely on the eigenvectors of the Laplacian of a weighted graph obtained from the image. The NCut criterion was previously used for image segmentation in supervised manner. We derive a new strategy for unsupervised image segmentation. This article describes an initial investigation to determine the suitability of such segment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2008
ISSN: 0196-2892
DOI: 10.1109/tgrs.2008.918647